Pore-scale simulation of carbonate dissolution in micro-CT images
نویسندگان
چکیده
We present a particle-based method to simulate carbonate dissolution at the pore scale directly on the voxels of three-dimensional micro-CT images. The flow field is computed on the images by solving the incompressible Navier-Stokes equations. Rock-fluid interaction is modeled using a three-step approach: solute advection, diffusion, and reaction. Advection is simulated with a semianalytical pore-scale streamline tracing algorithm, diffusion by random walk is superimposed, while the reaction rate is defined by the flux of particles through the pore-solid interface. We derive a relationship between the local particle flux and the independently measured batch calcite dissolution rate. We validate our method against a dynamic imaging experiment where a Ketton oolite is imaged during CO2-saturated brine injection at reservoir conditions. The image-calculated increases in porosity and permeability are predicted accurately, and the spatial distribution of the dissolution front is correctly replicated. The experiments and simulations are performed at a high flow rate, in the uniform dissolution regime – Pe ≫ 1 and PeDa ≪ 1—thus extending the reaction throughout the sample. Transport is advection dominated, and dissolution is limited to regions with significant inflow of solute. We show that the sample-averaged reaction rate is 1 order of magnitude lower than that measured in batch reactors. This decrease is the result of restrictions imposed on the flux of solute to the solid surface by the heterogeneous flow field, at the millimeter scale.
منابع مشابه
Pore-space structure and average dissolution rates: A simulation study
We study the influence of the pore-space geometry on sample-averaged dissolution rates in millimeter-scale carbonate samples undergoing reaction-controlled mineral dissolution upon the injection of a CO2-saturated brine. The representation of the pore space is obtained directly from micro-CT images with a resolution of a few microns. Simulations are performed with a particle tracking approach o...
متن کاملDynamic three-dimensional pore-scale imaging of reaction in a carbonate at reservoir conditions.
Quantifying CO2 transport and average effective reaction rates in the subsurface is essential to assess the risks associated with underground carbon capture and storage. We use X-ray microtomography to investigate dynamic pore structure evolution in situ at temperatures and pressures representative of underground reservoirs and aquifers. A 4 mm diameter Ketton carbonate core is injected with CO...
متن کاملPore-scale Characterization of Carbonate Rock Heterogeneity and Prediction of Petrophysical Properties
Carbonate reservoirs, accounting for majority of the world’s hydrocarbon reserves, are well known for their heterogeneity and multiscale pore characteristics. The pore sizes in carbonate rock can vary over orders of magnitudes, the geometry and topology parameters of pores at different scales have a great impact on flow properties. A relatively simple way to integrate a set of digital pore spac...
متن کاملNumerical Simulation on Hydromechanical Coupling in Porous Media Adopting Three-Dimensional Pore-Scale Model
A novel approach of simulating hydromechanical coupling in pore-scale models of porous media is presented in this paper. Parameters of the sandstone samples, such as the stress-strain curve, Poisson's ratio, and permeability under different pore pressure and confining pressure, are tested in laboratory scale. The micro-CT scanner is employed to scan the samples for three-dimensional images, as ...
متن کاملPredictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images.
We present predictions of transport through micro-CT images of porous media that include the analysis of correlation structure, velocity, and the dynamics of the evolving plume. We simulate solute transport through millimeter-sized three-dimensional images of a beadpack, a sandstone, and a carbonate, representing porous media with an increasing degree of pore-scale complexity. The Navier-Stokes...
متن کامل